Abstract

An ab initio investigation of the Si(111)-(7\ifmmode\times\else\texttimes\fi{}7) surface reconstruction is undertaken using the state of the art in massively parallel computation. Calculations of the total energy of an \ensuremath{\sim}700 effective-atom supercell are performed to determine (1) the fully relaxed atomic geometry, (2) the scanning-tunneling-microscope images as a function of bias voltage, and (3) the energy difference between the (7\ifmmode\times\else\texttimes\fi{}7) and the (2\ifmmode\times\else\texttimes\fi{}1) reconstructions. The (7\ifmmode\times\else\texttimes\fi{}7) reconstruction is found to be energetically favorable to the (2\ifmmode\times\else\texttimes\fi{}1) surface by 60 meV per (1\ifmmode\times\else\texttimes\fi{}1) unit cell.

Keywords

Massively parallelPhysicsAb initioScanning tunneling microscopeEnergy (signal processing)Surface reconstructionSurface (topology)ComputationAb initio quantum chemistry methodsAtom (system on chip)Atomic physicsQuantum mechanicsComputer scienceGeometryAlgorithmMoleculeParallel computingMathematics

Affiliated Institutions

Related Publications

First-Principles Determination of the Soft Mode in Cubic<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi>ZrO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>

A direct approach to calculate the phonon dispersion using an ab initio force constant method is introduced. The phonon dispersion and structural instability of cubic ${\mathrm{...

1997 Physical Review Letters 2708 citations

Publication Info

Year
1992
Type
article
Volume
68
Issue
9
Pages
1355-1358
Citations
369
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

369
OpenAlex

Cite This

K. D. Brommer, M. Needels, Brian Larson et al. (1992). <i>Ab initio</i>theory of the Si(111)-(7×7) surface reconstruction: A challenge for massively parallel computation. Physical Review Letters , 68 (9) , 1355-1358. https://doi.org/10.1103/physrevlett.68.1355

Identifiers

DOI
10.1103/physrevlett.68.1355