Abstract
Abstract Although autoreactive T cells recognizing self myelin Ags are present in most individuals, autoimmune disease of the central nervous system is a relatively rare medical condition. Development of autoimmune disease may require not only the presence of autoreactive T cells but also that autoreactive T cells become activated. Activation of T cells may require a minimum of two signals: an Ag-specific signal delivered by MHC-peptide complex and a second signal delivered by costimulatory molecules or cytokines. Although in vitro studies have suggested that cytokines, especially proinflammatory cytokines such as IL-1, IL-6, and TNF are involved in T cell activation, their precise roles in vivo are not clear. To determine the roles of proinflammatory cytokines in T cell activation in vivo and in the development of autoimmune disease, we have studied experimental autoimmune encephalomyelitis (EAE) in mice deficient in IL-6. We found that IL-6-deficient mice were completely resistant to EAE induced by myelin oligodendrocyte glycoprotein (MOG), whereas IL-6-competent control mice developed EAE characterized by focal inflammation and demyelination in the central nervous system and deficiency in neurologic functions. Furthermore, we established that the resistance to EAE in IL-6-deficient mice was associated with a deficiency of MOG-specific T cells to differentiate into either Th1 or Th2 type effector cells in vivo. These results strongly suggest that IL-6 plays a crucial role in the activation and differentiation of autoreactive T cells in vivo and that blocking IL-6 function can be an effective means to prevent EAE.
Keywords
Affiliated Institutions
Related Publications
Myelin Oligodendrocyte Glycoprotein–specific T Cell Receptor Transgenic Mice Develop Spontaneous Autoimmune Optic Neuritis
Multiple sclerosis (MS) is considered to be an autoimmune disease of the central nervous system (CNS) that in many patients first presents clinically as optic neuritis. The rela...
Superantigen overcomes resistance of IL‐6‐deficient mice towards MOG‐induced EAE by a TNFR1 controlled pathway
Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein peptide 35-55 (MOG) leads to a chronic form of disease characterized by demyelinat...
T Cell Deletion in High Antigen Dose Therapy of Autoimmune Encephalomyelitis
Encounters with antigen can stimulate T cells to become activated and proliferate, become nonresponsive to antigen, or to die. T cell death was shown to be a physiological respo...
IL-23 drives a pathogenic T cell population that induces autoimmune inflammation
Interleukin (IL)-23 is a heterodimeric cytokine composed of a unique p19 subunit, and a common p40 subunit shared with IL-12. IL-12 is important for the development of T helper ...
Blockade of Interleukin-6 Signaling Suppresses Not Only Th17 but Also Interphotoreceptor Retinoid Binding Protein–Specific Th1 by Promoting Regulatory T Cells in Experimental Autoimmune Uveoretinitis
PURPOSE. Both Th17 and Th1 cells contribute to experimental autoimmune uveoretinitis (EAU). Interleukin-6 (IL-6) blockade inhibits Th17 differentiation in EAU and potently suppr...
Publication Info
- Year
- 1998
- Type
- article
- Volume
- 161
- Issue
- 12
- Pages
- 6480-6486
- Citations
- 441
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.4049/jimmunol.161.12.6480