Abstract
The effect of introducing a new longwave radiation parameterization, RRTM, on the energy budget and thermodynamic properties of the National Center for Atmospheric Research (NCAR) community climate model (CCM3) is described. RRTM is a rapid and accurate, correlated k , radiative transfer model that has been developed for the Atmospheric Radiation Measurement (ARM) program to address the ARM objective of improving radiation models in GCMs. Among the important features of RRTM are its connection to radiation measurements through comparison to the extensively validated line‐by‐line radiative transfer model (LBLRTM) and its use of an improved and validated water vapor continuum model. Comparisons between RRTM and the CCM3 longwave (LW) parameterization have been performed for single atmospheric profiles using the CCM3 column radiation model and for two 5‐year simulations using the full CCM3 climate model. RRTM produces a significant enhancement of LW absorption largely due to its more physical and spectrally extensive water vapor continuum model relative to the current CCM3 water continuum treatment. This reduces the clear sky, outgoing longwave radiation over the tropics by 6–9 W m −2 . Downward LW surface fluxes are increased by 8–15 W m −2 at high latitudes and other dry regions. These changes considerably improve known flux biases in CCM3 and other GCMs. At low and midlatitudes, RRTM enhances LW radiative cooling in the upper troposphere by 0.2–0.4 K d −1 and reduces cooling in the lower troposphere by 0.2–0.5 K d −1 . The enhancement of downward surface flux contributes to increasing lower tropospheric and surface temperatures by 1–4 K, especially at high latitudes, which partly compensates documented, CCM3 cold temperature biases in these regions. Experiments were performed with the weather prediction model of the European Center for Medium Range Weather Forecasts (ECMWF), which show that RRTM also impacts temperature on timescales relevant to forecasting applications. RRTM is competitive with the CCM3 LW model in computational expense at 30 layers and with the ECMWF LW model at 60 layers, and it would be relatively faster at higher vertical resolution.
Keywords
Related Publications
Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave
A rapid and accurate radiative transfer model (RRTM) for climate applications has been developed and the results extensively evaluated. The current version of RRTM calculates fl...
Line‐by‐line calculations of atmospheric fluxes and cooling rates: Application to water vapor
A model for the accelerated calculation of clear sky fluxes based on the line‐by‐line radiance model FASCODE has been developed and applied to the calculation of cooling rates f...
Simulation of the Earth's radiation budget by the European Centre for Medium‐Range Weather Forecasts 40‐year reanalysis (ERA40)
The radiation budget simulated by the European Centre for Medium‐Range Weather Forecasts (ECMWF) 40‐year reanalysis (ERA40) is evaluated for the period 1979–2001 using independe...
Line‐by‐line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons
A line‐by‐line model (LBLRTM) has been applied to the calculation of clear‐sky longwave fluxes and cooling rates for atmospheres including CO 2 , O 3 , CH 4 , N 2 O, CCl 4 , CFC...
Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment
The NASA Earth Radiation Budget Experiment (ERBE), flying aboard multiple satellites, is providing new insights into the climate system. Monthly averaged clear‐sky and cloudy sk...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 105
- Issue
- D11
- Pages
- 14873-14890
- Citations
- 517
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1029/2000jd900091