Abstract
We have investigated the sources of error in bond lengths and dissociation energies computed from ab initio effective potentials derived from Phillips–Kleinman type pseudo-orbitals. We propose an alternate pseudo-orbital, effective potential treatment with the primary objective of agreement with all-electron molecular calculations. This new treatment forces the pseudo-orbitals to match precisely the Hartree–Fock orbitals in the valence region and thereby eliminates the major cause of error in the earlier calculations. Effective core potentials derived from these revised pseudo-orbitals were used to compute potential energy curves for the ground states of F2, Cl2, and LiCl and the results are compared with previous all-electron and effective potential calculations. Our effective potentials yield dissociation energies and bond lengths which are in excellent agreement with the all-electron values. Furthermore, in contrast to other procedures, our revised effective potentials result in an excellent description of the inner repulsive walls of the dissociation curves.
Keywords
Affiliated Institutions
Related Publications
<i>A</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials: Reduction of all-electron molecular structure calculations to calculations involving only valence electrons
A formalism is developed for obtaining ab initio effective core potentials from numerical Hartree–Fock wavefunctions and such potentials are presented for C, N, O, F, Cl, Fe, Br...
Relativistic and nonrelativistic effective core potentials for xenon. Applications to XeF, Xe2, and Xe2+
Valence electron calculations on the low-lying electronic states of XeF, Xe2, and Xe2+ are reported using recently developed nonrelativistic and relativistic effective core pote...
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potentials for molecular calculations. Applications to the uranium atom
The procedure of deriving ab initio effective core potentials (ECP) to incorporate the Coulomb and exchange effects as well as orthogonality constraints from the inner core elec...
Relativistic effects in <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective core potential studies of heavy metal compounds. Application to HgCl2, AuCl, and PtH
A method is described for obtaining l-dependent relativistic effective core potentials (ECPs) from Dirac–Fock self-consistent field atomic wave functions. These potentials are d...
<i>Ab Initio</i> Effective Potentials for Use in Molecular Calculations
We have investigated the efficacy of ab initio effective potentials in replacing the core electrons of atoms for use in molecular calculations. The effective potentials are obta...
Publication Info
- Year
- 1979
- Type
- article
- Volume
- 71
- Issue
- 11
- Pages
- 4445-4450
- Citations
- 723
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1063/1.438197