Abstract

This paper describes the application of reinforcement learning (RL) to the difficult real world problem of elevator dispatching. The elevator domain poses a combination of challenges not seen in most RL research to date. Elevator systems operate in continuous state spaces and in continuous time as discrete event dynamic systems. Their states are not fully observable and they are nonstationary due to changing passenger arrival rates. In addition, we use a team of RL agents, each of which is responsible for controlling one elevator car. The team receives a global reinforcement signal which appears noisy to each agent due to the effects of the actions of the other agents, the random nature of the arrivals and the incomplete observation of the state. In spite of these complications, we show results that in simulation surpass the best of the heuristic elevator control algorithms of which we are aware. These results demonstrate the power of RL on a very large scale stochastic dynamic optimiz...

Keywords

ElevatorReinforcement learningComputer scienceHeuristicDomain (mathematical analysis)State (computer science)Artificial intelligenceEngineeringAlgorithmMathematics

Affiliated Institutions

Related Publications

Publication Info

Year
1995
Type
article
Volume
8
Pages
1017-1023
Citations
493
Access
Closed

External Links

Citation Metrics

493
OpenAlex

Cite This

Robert H. Crites, Andrew G. Barto (1995). Improving Elevator Performance Using Reinforcement Learning. , 8 , 1017-1023.