Abstract
ABSTRACT Several models (animal caliciviruses, poliovirus 1 [PV1], and F-specific RNA bacteriophages) are usually used to predict inactivation of nonculturable viruses. For the same UV fluence, viral inactivation observed in the literature varies from 0 to 5 logs according to the models and the methods (infectivity versus molecular biology). The lack of knowledge concerning the mechanisms of inactivation due to UV prevents us from selecting the best model. In this context, determining if viral genome degradation may explain the loss of infectivity under UV radiation becomes essential. Thus, four virus models (PV1 and three F-specific RNA phages: MS2, GA, and Qβ) were exposed to UV radiation from 0 to 150 mJ · cm −2 . PV1 is the least-resistant virus, while MS2 and GA phages are the most resistant, with phage Qβ having an intermediate sensitivity; respectively, 6-log, 2.3-log, 2.5-log, and 4-log decreases for 50 mJ · cm −2 . In parallel, analysis of RNA degradation demonstrated that this phenomenon depends on the fragment size for PV1 as well as for MS2. Long fragments (above 2,000 bases) for PV1 and MS2 fell rapidly to the background level (>1.3-log decrease) for 20 mJ · cm −2 and 60 mJ · cm − 2 , respectively. Nevertheless, the size of the viral RNA is not the only factor affecting UV-induced RNA degradation, since viral RNA was more rapidly degraded in PV1 than in the MS2 phage with a similar size. Finally, extrapolation of inactivation and UV-induced RNA degradation kinetics highlights that genome degradation could fully explain UV-induced viral inactivation.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
DNA polymerase of bacteriophage T4 is an autogenous translational repressor.
In bacteriophage T4 the protein product of gene 43 (gp43) is a multifunctional DNA polymerase that is essential for replication of the phage genome. The protein harbors DNA-bind...
Excess information at bacteriophage T7 genomic promoters detected by a random cloning technique
In our previous analysis of the information at binding sites on nucleic acids, we found that most of the sites examined contain the amount of information expected from their fre...
Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity
Photodiodes fabricated from conjugated polymers exhibit excellent sensitivity to visible-UV radiation. The photosensitivity increases with reverse bias voltage. The photorespons...
Cell-free cloning using φ29 DNA polymerase
We describe conditions for rolling-circle amplification (RCA) of individual DNA molecules 5–7 kb in size by >10 9 -fold, using φ29 DNA polymerase. The principal difficulty wi...
THE PREPARATION AND CHARACTERIZATION OF HIGHLY EFFICIENT TITANIUM OXIDE–BASED PHOTOFUNCTIONAL MATERIALS
▪ Abstract Recent research trends of the preparation and characterization of highly efficient titanium oxide–based photocatalysts are reviewed on the basis of studies done in ou...
Publication Info
- Year
- 2006
- Type
- article
- Volume
- 72
- Issue
- 12
- Pages
- 7671-7677
- Citations
- 138
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1128/aem.01106-06
- PMID
- 17041164
- PMCID
- PMC1694248