Abstract
We derive an estimator of the asymptotic variance of both single and multiple imputation estimators. We assume a parametric imputation model but allow for non- and semiparametric analysis models. Our variance estimator, in contrast to the estimator proposed by Rubin (1987), is consistent even when the imputation and analysis models are misspecified and incompatible with one another.
Keywords
Affiliated Institutions
Related Publications
Analysis of Longitudinal Data
1. Introduction 2. Design considerations 3. Exploring longitudinal data 4. General linear models 5. Parametric models for covariance structure 6. Analysis of variance methods 7....
Maximum Likelihood from Incomplete Data Via the <i>EM</i> Algorithm
Summary A broadly applicable algorithm for computing maximum likelihood estimates from incomplete data is presented at various levels of generality. Theory showing the monotone ...
Deciding on the Number of Classes in Latent Class Analysis and Growth Mixture Modeling: A Monte Carlo Simulation Study
Abstract Mixture modeling is a widely applied data analysis technique used to identify unobserved heterogeneity in a population. Despite mixture models' usefulness in practice, ...
Order Statistics Estimators of the Location of the Cauchy Distribution
Abstract In a recent paper in this Journal, Rothenberg, Fisher and Tilanus [1] discuss a class of estimators of the location parameter of the Cauchy distribution, taking the for...
Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification.
This study evaluated the sensitivity of maximum likelihood (ML)-, generalized least squares (GLS)-, and asymptotic distribution-free (ADF)-based fit indices to model misspecific...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 87
- Issue
- 1
- Pages
- 113-124
- Citations
- 274
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/biomet/87.1.113