Abstract

Many real-world applications require the prediction of long sequence time-series, such as electricity consumption planning. Long sequence time-series forecasting (LSTF) demands a high prediction capacity of the model, which is the ability to capture precise long-range dependency coupling between output and input efficiently. Recent studies have shown the potential of Transformer to increase the prediction capacity. However, there are several severe issues with Transformer that prevent it from being directly applicable to LSTF, including quadratic time complexity, high memory usage, and inherent limitation of the encoder-decoder architecture. To address these issues, we design an efficient transformer-based model for LSTF, named Informer, with three distinctive characteristics: (i) a ProbSparse self-attention mechanism, which achieves O(L log L) in time complexity and memory usage, and has comparable performance on sequences' dependency alignment. (ii) the self-attention distilling highlights dominating attention by halving cascading layer input, and efficiently handles extreme long input sequences. (iii) the generative style decoder, while conceptually simple, predicts the long time-series sequences at one forward operation rather than a step-by-step way, which drastically improves the inference speed of long-sequence predictions. Extensive experiments on four large-scale datasets demonstrate that Informer significantly outperforms existing methods and provides a new solution to the LSTF problem.

Keywords

TransformerComputer scienceEncoderSequence (biology)Dependency (UML)AlgorithmArtificial intelligenceEngineeringVoltage

Affiliated Institutions

Related Publications

Long Short-Term Memory

Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We brief...

1997 Neural Computation 90535 citations

Publication Info

Year
2021
Type
article
Volume
35
Issue
12
Pages
11106-11115
Citations
4749
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

4749
OpenAlex

Cite This

Haoyi Zhou, Shanghang Zhang, Jieqi Peng et al. (2021). Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proceedings of the AAAI Conference on Artificial Intelligence , 35 (12) , 11106-11115. https://doi.org/10.1609/aaai.v35i12.17325

Identifiers

DOI
10.1609/aaai.v35i12.17325