<i>Planck</i> 2018 results

N. Aghanim , Y. Akrami , M. Ashdown , N. Aghanim , Y. Akrami , M. Ashdown , J. Aumont , C. Baccigalupi , M. Ballardini , A. J. Banday , R. B. Barreiro , N. Bartolo , S. Basak , Richard A. Battye , K. Benabed , J.-P. Bernard , M. Bersanelli , P. Bielewicz , J. J. Bock , J. R. Bond , J. Borrill , F. R. Bouchet , F. Boulanger , M. Bucher , C. Burigana , R. C. Butler , E. Calabrese , J.-F. Cardoso , Julien Carron , A. Challinor , H. C. Chiang , Jens Chluba , L. P. L. Colombo , C. Combet , D. Contreras , B. P. Crill , F. Cuttaia , P. de Bernardis , G. de Zotti , G. de Zotti , J.‐M. Delouis , Eleonora Di Valentino , J. M. Diego , J. M. Diego , M. Douspis , A. Ducout , X. Dupac , S. Dusini , G. Efstathiou , F. Elsner , T. A. Enßlin , H. K. Eriksen , Y. Fantaye , M. Farhang , J. Fergusson , R. Fernández-Cobos , F. Finelli⋆ , F. Forastieri , M. Frailis , A. A. Fraisse , E. Franceschi , A. Frolov , S. Galeotta , S. Galli , K. Ganga , R. T. Génova-Santos , M. Gerbino , T. Ghosh , J. González-Nuevo , K. M. Górski , S. Gratton , A. Gruppuso , J. E. Gudmundsson , J. Hamann , Will Handley , F. K. Hansen , D. Herranz , S. R. Hildebrandt , E. Hivon , Zhiqi Huang , A. H. Jaffe , W. C. Jones , A. Karakci , E. Keihänen , R. Keskitalo , K. Kiiveri , J. Kim , T. S. Kisner , L. Knox , N. Krachmalnicoff , M. Kunz , H. Kurki‐Suonio , G. Lagache , J.‐M. Lamarre , A. Lasenby , M. Lattanzi , C. R. Lawrence , M. Le Jeune , Pablo Lemos , J. Lesgourgues , F. Levrier , Antony Lewis , M. Liguori
2021 Astronomy and Astrophysics 1,470 citations

Abstract

In the original version, the bounds given in Eqs. (87a) and (87b) on the contribution to the early-time optical depth, (15,30), contained a numerical error in deriving the 95th percentile from the Monte Carlo samples. The corrected 95% upper bounds are: τ(15,30) &amp;lt; 0:018 (lowE, flat τ(15, 30), FlexKnot), (1) τ(15, 30) &amp;lt; 0:023 (lowE, flat knot, FlexKnot): (2) These bounds are a factor of 3 larger than the originally reported results. Consequently, the new bounds do not significantly improve upon previous results from Planck data presented in Millea &amp;amp; Bouchet (2018) as was stated, but are instead comparable. Equations (1) and (2) give results that are now similar to those of Heinrich &amp;amp; Hu (2021), who used the same Planck 2018 data to derive a 95% upper bound of 0.020 using the principal component analysis (PCA) model and uniform priors on the PCA mode amplitudes.

Keywords

PhysicsAstrophysicsPlanckAstronomy

Affiliated Institutions

Related Publications

<i>Planck</i> 2018 results

We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the t...

2020 Astronomy and Astrophysics 12547 citations

<i>Planck</i>2015 results

We present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB. These data are consistent with the six-parameter inflationa...

2016 Astronomy and Astrophysics 10120 citations

Publication Info

Year
2021
Type
article
Volume
652
Pages
C4-C4
Citations
1470
Access
Closed

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

1470
OpenAlex
0
Influential
1411
CrossRef

Cite This

N. Aghanim, Y. Akrami, M. Ashdown et al. (2021). <i>Planck</i> 2018 results. Astronomy and Astrophysics , 652 , C4-C4. https://doi.org/10.1051/0004-6361/201833910e

Identifiers

DOI
10.1051/0004-6361/201833910e

Data Quality

Data completeness: 81%