Abstract
Hypochlorous acid (HOCl) is a powerful oxidant generated from H(2)O(2) and chloride ions by the heme enzyme myeloperoxidase (MPO) released from activated leukocytes. In addition to its potent antibacterial effects, excessive HOCl production can lead to host tissue damage, with this implicated in human diseases such as atherosclerosis, cystic fibrosis, and arthritis. HOCl reacts rapidly with biological materials, with proteins being major targets. Chlorinated amines (chloramines) formed from Lys and His side chains and alpha-amino groups on proteins are major products of these reactions; these materials are however also oxidants and can undergo further reactions. In this study, the kinetics of reaction of His side-chain chloramines with other protein components have been investigated by UV/visible spectroscopy and stopped flow methods at pH 7.4 and 22 degrees C, using the chloramines of the model compound 4-imidazoleacetic acid and N-alpha-acetyl-histidine. The second-order rate constants decrease in a similar order (Cys > Met > disulfide bonds > Trp approximately alpha-amino > Lys >> Tyr > backbone amides > Arg) to the corresponding reactions of HOCl, but are typically 5-25 times slower. These rate constants are consistent with His side-chain chloramines being important secondary oxidants in HOCl-mediated damage. These studies suggest that formation and subsequent reactions of His side-chain chloramines may be responsible for the targeted secondary modification of selected protein residues by HOCl that has previously been observed experimentally and highlight the importance of chloramine structure on their subsequent reactivity.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structur...
Improved side‐chain torsion potentials for the Amber ff99SB protein force field
Abstract Recent advances in hardware and software have enabled increasingly long molecular dynamics (MD) simulations of biomolecules, exposing certain limitations in the accurac...
Complete localization of the intrachain disulphide bonds and the <i>N</i>-glycosylation points in the α-subunit of human platelet glycoprotein IIb
Glycoprotein IIb (GPIIb), one of the two molecular components of the inducible receptor for fibrinogen on the platelet surface, is formed from two subunits, GPIIb alpha (114 kDa...
Free Radicals in the Physiological Control of Cell Function
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate...
Derivation of Fixed Partial Charges for Amino Acids Accommodating a Specific Water Model and Implicit Polarization
We have developed the IPolQ method for fitting nonpolarizable point charges to implicitly represent the energy of polarization for systems in pure water. The method involves ite...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 44
- Issue
- 19
- Pages
- 7378-7387
- Citations
- 100
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/bi0474665
- PMID
- 15882077