Abstract
Layered LixMn1-yCoyO2 with the O3 (αNaFeO2) structure has been prepared from the analogous P3 sodium phase by ion exchange using LiBr in either ethanol at 80 °C or hexanol at 160 °C. The former preserves, to some extent, vacancies present on the transitional metal sites of the sodium phase, whereas the latter eliminates the vacancies. Materials with vacancies exhibit better performance as cathodes in rechargeable lithium batteries. The 2.5% Co doped material prepared in ethanol exhibits capacities of 200 mAhg-1 when cycled at C/8 between 2.4 and 4.6 V at 30 °C and with a fade of only 0.08% per cycle. A capacity of 180 mA h g-1 can be obtained at C/2 and 200 mAhg-1 at C rate and 55 °C. Importantly, this performance is obtained despite the fact that the materials convert to spinel-like phases on cycling. The spinel-like phases that form are nanostructured, with each crystallite being composed of a mosaic of nanodomains. The relief of strain at the domain wall boundaries accompanying the cubic-tetragonal phase transition may explain, at least in part, the facile cycling of these materials over a wide composition range (including the 3 V plateau) compared with high-temperature spinel which does not possess such nanodomains. Furthermore, vacancies present in the ethanol materials appear to migrate to the domain walls on cycling, rendering even more facile the Jahn-Teller-driven phase transformation on cycling these materials compared with those prepared in hexanol.
Keywords
Affiliated Institutions
Related Publications
Inversion Symmetry Breaking by Oxygen Octahedral Rotations in the Ruddlesden-Popper<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Na</mml:mi><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>Family
Rotations of oxygen octahedra are ubiquitous, but they cannot break inversion symmetry in simple perovskites. However, in a layered oxide structure, this is possible, as we demo...
<i>The Physics of Liquid Crystals</i>
Part 1 Liquid crystals - main types and properties: introduction - what is a liquid crystal? the building blocks nematics and cholesterics smectics columnar phases more on long-...
All-Solid-State Lithium Battery with LiCo[sub 0.3]Ni[sub 0.7]O[sub 2] Fine Powder as Cathode Materials with an Amorphous Sulfide Electrolyte
An all-solid-state battery was fabricated with fine powder as cathode materials. The fine powder was synthesized with oxalate decomposition methods and the average particle size...
<i>Ab initio</i>lattice dynamics and phase transformations of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi mathvariant="normal">Zr</mml:mi><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:mrow></mml:math>
Zirconia, $\mathrm{Zr}{\mathrm{O}}_{2}$, is one of the most important ceramic materials in modern technology. Its versatility is closely related to phase transformations. Althou...
The Intrinsic Anodic Stability of Several Anions Comprising Solvent‐Free Ionic Liquids
Salts of the form 1,2‐dimethyl‐3‐propylimidazolium X [where , and were prepared and purified. Linear sweep voltammetry was conducted at 80°C, a temperature at which all four sal...
Publication Info
- Year
- 2001
- Type
- article
- Volume
- 13
- Issue
- 7
- Pages
- 2380-2386
- Citations
- 97
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1021/cm000965h