Abstract
Predicting items a user would like on the basis of other users’ ratings for these items has become a well-established strategy adopted by many recommendation services on the Internet. Although this can be seen as a classification problem, algo-rithms proposed thus far do not draw on results from the ma-chine learning literature. We propose a representation for collaborative filtering tasks that allows the application of virtually any machine learning algorithm. We identify the shortcomings of current collaborative filtering techniques and propose the use of learning algorithms paired with feature extraction techniques that specifically address the limitations of previous approaches. Our best-performing algorithm is based on the singular value decomposition of an initial matrix of user ratings, exploiting latent structure that essentially eliminates the need for users to rate common items in order to become predictors for one another's preferences. We evaluate the proposed algorithm on a large database of user ratings for motion pictures and find that our approach significantly out-performs current collaborative filtering algorithms.
Keywords
Affiliated Institutions
Related Publications
Item-based top-<i>N</i>recommendation algorithms
The explosive growth of the world-wide-web and the emergence of e-commerce has led to the development of recommender systems ---a personalized information filtering technology u...
Incorporating contextual information in recommender systems using a multidimensional approach
The article presents a multidimensional (MD) approach to recommender systems that can provide recommendations based on additional contextual information besides the typical info...
LightGCN
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering. Nevertheless, the reasons of its effectiveness for recommendation are not well under...
Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions
This paper presents an overview of the field of recommender systems and describes the current generation of recommendation methods that are usually classified into the following...
Cross-Validatory Choice of the Number of Components From a Principal Component Analysis
A method is described for choosing the number of components to retain in a principal component analysis when the aim is dimensionality reduction. The correspondence between prin...
Publication Info
- Year
- 1998
- Type
- article
- Pages
- 46-54
- Citations
- 1013
- Access
- Closed