Abstract
With the continuous expansion of data availability in many large-scale, complex, and networked systems, such as surveillance, security, Internet, and finance, it becomes critical to advance the fundamental understanding of knowledge discovery and analysis from raw data to support decision-making processes. Although existing knowledge discovery and data engineering techniques have shown great success in many real-world applications, the problem of learning from imbalanced data (the imbalanced learning problem) is a relatively new challenge that has attracted growing attention from both academia and industry. The imbalanced learning problem is concerned with the performance of learning algorithms in the presence of underrepresented data and severe class distribution skews. Due to the inherent complex characteristics of imbalanced data sets, learning from such data requires new understandings, principles, algorithms, and tools to transform vast amounts of raw data efficiently into information and knowledge representation. In this paper, we provide a comprehensive review of the development of research in learning from imbalanced data. Our focus is to provide a critical review of the nature of the problem, the state-of-the-art technologies, and the current assessment metrics used to evaluate learning performance under the imbalanced learning scenario. Furthermore, in order to stimulate future research in this field, we also highlight the major opportunities and challenges, as well as potential important research directions for learning from imbalanced data.
Keywords
Affiliated Institutions
Related Publications
Statistical pattern recognition: a review
The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated...
Object Detection With Deep Learning: A Review
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection ...
Additive logistic regression: a statistical view of boosting (With discussion and a rejoinder by the authors)
Boosting is one of the most important recent developments in\nclassification methodology. Boosting works by sequentially applying a\nclassification algorithm to reweighted versi...
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Human ability to understand language is general, flexible, and robust. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-o...
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions
In the last few years, the deep learning (DL) computing paradigm has been deemed the Gold Standard in the machine learning (ML) community. Moreover, it has gradually become the ...
Publication Info
- Year
- 2009
- Type
- article
- Volume
- 21
- Issue
- 9
- Pages
- 1263-1284
- Citations
- 8871
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/tkde.2008.239