Abstract
Mixture modeling is becoming an increasingly important tool in the remote sensing community as researchers attempt to resolve subpixel, area information. This paper compares a well-established technique, linear spectral mixture models (LSMM), with a much newer idea based on data selection, support vector machines (SVM). It is shown that the constrained least squares LSMM is equivalent to the linear SVM, which relies on proving that the LSMM algorithm possesses the “maximum margin” property. This in turn shows that the LSMM algorithm can be derived from the same optimality conditions as the linear SVM, which provides important insights about the role of the bias term and rank deficiency in the pure pixel matrix within the LSMM algorithm. It also highlights one of the main advantages for using the linear SVM algorithm in that it performs automatic “pure pixel” selection from a much larger database. In addition, extensions to the basic SVM algorithm allow the technique to be applied to data sets that exhibit spectral confusion (overlapping sets of pure pixels) and to data sets that have nonlinear mixture regions. Several illustrative examples, based on an area-labeled Landsat dataset, are used to demonstrate the potential of this approach.
Keywords
Affiliated Institutions
Related Publications
Fast Training of Support Vector Machines Using Sequential Minimal Optimization
This chapter describes a new algorithm for training Support Vector Machines: Sequential Minimal Optimization, or SMO. Training a Support Vector Machine (SVM) requires the soluti...
Object Detection with Discriminatively Trained Part-Based Models
We describe an object detection system based on mixtures of multiscale deformable part models. Our system is able to represent highly variable object classes and achieves state-...
Kernel Logistic Regression and the Import Vector Machine
The support vector machine (SVM) is known for its good performance in two-class classification, but its extension to multiclass classification is still an ongoing research issue...
A discriminatively trained, multiscale, deformable part model
This paper describes a discriminatively trained, multiscale, deformable part model for object detection. Our system achieves a two-fold improvement in average precision over the...
A general framework for object detection
This paper presents a general trainable framework for object detection in static images of cluttered scenes. The detection technique we develop is based on a wavelet representat...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 38
- Issue
- 5
- Pages
- 2346-2360
- Citations
- 206
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1109/36.868891