Logarithmic Divergence of both In-Plane and Out-of-Plane Normal-State Resistivities of Superconducting<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Sr</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">Cu</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>in the Zero-Temperature Limit

1995 Physical Review Letters 412 citations

Abstract

The low-temperature normal-state resistivities of underdoped ${\mathrm{La}}_{2\ensuremath{-}x}{\mathrm{Sr}}_{x}\mathrm{Cu}{\mathrm{O}}_{4}$ crystals with ${T}_{c}$ of 20 and 35 K were studied by suppressing the superconductivity with pulsed magnetic fields of 61 T. Both in-plane resistivity ${\ensuremath{\rho}}_{\mathrm{ab}}$ and out-of-plane resistivity ${\ensuremath{\rho}}_{c}$ are found to diverge logarithmically as $\frac{T}{{T}_{c}}\ensuremath{\rightarrow}0$. Logarithmic divergence is accompanied by a nearly constant anisotropy ratio, $\frac{{\ensuremath{\rho}}_{c}}{{\ensuremath{\rho}}_{\mathrm{ab}}}$, suggesting an unusual three-dimensional insulator.

Keywords

PhysicsElectrical resistivity and conductivitySuperconductivityCondensed matter physicsAnisotropyPlane (geometry)Divergence (linguistics)LogarithmExponentQuantum mechanicsGeometryMathematical analysisMathematics

Affiliated Institutions

Related Publications

Publication Info

Year
1995
Type
article
Volume
75
Issue
25
Pages
4662-4665
Citations
412
Access
Closed

External Links

Citation Metrics

412
OpenAlex

Cite This

Yoichi Ando, G. S. Boebinger, A. Passner et al. (1995). Logarithmic Divergence of both In-Plane and Out-of-Plane Normal-State Resistivities of Superconducting<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">La</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mo>−</mml:mo><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">Sr</mml:mi></mml:mrow><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mi mathvariant="normal">Cu</mml:mi><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">O</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>in the Zero-Temperature Limit. Physical Review Letters , 75 (25) , 4662-4665. https://doi.org/10.1103/physrevlett.75.4662

Identifiers

DOI
10.1103/physrevlett.75.4662