Abstract

A new approach for anisotropic diffusion processing of color images is proposed. The main idea of the algorithm is to facilitate diffusion of the image in the direction parallel to color edges. The direction of maximal and minimal color change at each point is computed using the first fundamental form of the image in (L*a*b*) color space. The image (Phi) evolves according to an anisotropic diffusion flow given by (delta) (Phi) /(delta) t equals g((lambda) +, (lambda) -)(delta) 2(Phi) /(delta) (xi) 2, where (xi) is the direction of minimal color change. The diffusion coefficient, g((lambda) +, (lambda) -), is a function of the eigenvalues of the first fundamental form, which represent the maximal and minimal rates of color change. Examples for real color images are presented.© (1996) COPYRIGHT SPIE--The International Society for Optical Engineering. Downloading of the abstract is permitted for personal use only.

Keywords

LambdaDiffusionAnisotropic diffusionEigenvalues and eigenvectorsImage (mathematics)MathematicsArtificial intelligenceColor spaceComputer visionPhysicsComputer scienceAlgorithmOpticsQuantum mechanics

Affiliated Institutions

Related Publications

Publication Info

Year
1996
Type
article
Volume
2657
Pages
471-482
Citations
11
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

11
OpenAlex

Cite This

Guillermo Sapiro, Dario L. Ringach (1996). <title>Anisotropic diffusion of color images</title>. Proceedings of SPIE, the International Society for Optical Engineering/Proceedings of SPIE , 2657 , 471-482. https://doi.org/10.1117/12.238745

Identifiers

DOI
10.1117/12.238745