Abstract
A multiple sequence alignment program, MAFFT, has been developed. The CPU time is drastically reduced as compared with existing methods. MAFFT includes two novel techniques. (i) Homo logous regions are rapidly identified by the fast Fourier transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue. (ii) We propose a simplified scoring system that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length. Two different heuristics, the progressive method (FFT-NS-2) and the iterative refinement method (FFT-NS-i), are implemented in MAFFT. The performances of FFT-NS-2 and FFT-NS-i were compared with other methods by computer simulations and benchmark tests; the CPU time of FFT-NS-2 is drastically reduced as compared with CLUSTALW with comparable accuracy. FFT-NS-i is over 100 times faster than T-COFFEE, when the number of input sequences exceeds 60, without sacrificing the accuracy.
Keywords
Affiliated Institutions
Related Publications
MAFFT version 5: improvement in accuracy of multiple sequence alignment
The accuracy of multiple sequence alignment program MAFFT has been improved. The new version (5.3) of MAFFT offers new iterative refinement options, H-INS-i, F-INS-i and G-INS-i...
MUSCLE: multiple sequence alignment with high accuracy and high throughput
We describe MUSCLE, a new computer program for creating multiple alignments of protein sequences. Elements of the algorithm include fast distance estimation using kmer counting,...
CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individu...
Analysis and Comparison of Benchmarks for Multiple Sequence Alignment
The most popular way of comparing the performance of multiple sequence alignment programs is to use empirical testing on sets of test sequences. Several such test sets now exist...
IQPNNI: Moving Fast Through Tree Space and Stopping in Time
An efficient tree reconstruction method (IQPNNI) is introduced to reconstruct a phylogenetic tree based on DNA or amino acid sequence data. Our approach combines various fast al...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 30
- Issue
- 14
- Pages
- 3059-3066
- Citations
- 16606
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1093/nar/gkf436