Abstract

It is shown that the maximal rank of $m\times n\times(mn-k)$ tensors with $k \leqq \min \{ {{(m-1)^2}/2},{{(n-1)^2} / 2} \}$ is greater than $mn - 4\sqrt {2k} + O(1)$.MSC codes68G2515A57Keywordscomputation complexitybilinear formstensor rank

Keywords

Rank (graph theory)CombinatoricsMathematicsPhysics

Affiliated Institutions

Related Publications

Publication Info

Year
1990
Type
article
Volume
19
Issue
3
Pages
467-471
Citations
6
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

6
OpenAlex

Cite This

Nader H. Bshouty (1990). Maximal Rank of $m\times n\times(mn-k)$ Tensors. SIAM Journal on Computing , 19 (3) , 467-471. https://doi.org/10.1137/0219031

Identifiers

DOI
10.1137/0219031