Abstract

A <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q</tex> -nary error-correcting code with <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">N = q^{k}</tex> code words of length <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">n = k + r</tex> can have no greater minimum distance <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d</tex> than <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r+1</tex> . The class of codes for which <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">d = r+1</tex> is studied first in general, then with the restriction that the codes be linear. Examples and construction methods are given to show that these codes exist for a number of values of <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">q, k</tex> , and <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">r</tex> .

Keywords

Code (set theory)Computer scienceAlgorithmProgramming language

Affiliated Institutions

Related Publications

Low-density parity-check codes

A low-density parity-check code is a code specified by a parity-check matrix with the following properties: each column contains a small fixed number <tex xmlns:mml="http://www....

1962 IEEE Transactions on Information Theory 10397 citations

Compressed sensing

Suppose x is an unknown vector in Ropf <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</sup> (a digital image or signal); we pla...

2006 IEEE Transactions on Information Theory 22524 citations

Publication Info

Year
1964
Type
article
Volume
10
Issue
2
Pages
116-118
Citations
508
Access
Closed

External Links

Social Impact

Altmetric

Social media, news, blog, policy document mentions

Citation Metrics

508
OpenAlex

Cite This

R. C. Singleton (1964). Maximum distanceq-nary codes. IEEE Transactions on Information Theory , 10 (2) , 116-118. https://doi.org/10.1109/tit.1964.1053661

Identifiers

DOI
10.1109/tit.1964.1053661