Abstract
Microstimulation was carried out at over 1,250 sites in the putamen in four unanesthetized rhesus monkeys. At numerous sites, microstimulation resulted in movements of individual body parts including leg, arm, and face. Microstimulation-evoked limb movements were invariably contralateral to the stimulating electrode. In nearly all instances, the response at threshold was restricted to or maximal about a single joint. A small percentage of stimulation-evoked axial and orofacial movements were bilateral. The same motor response was frequently evoked over distances of up to 1,200 micron along a single penetration, suggesting that a relatively homogeneous motor-response zone underlies the observed micro-stimulation effects. We have designated these presumptive functional units striatal microexcitable zones (SMZ). The boundaries of adjacent SMZ involved in different movements frequently appeared to overlap. Amplitude, velocity, and acceleration of microstimulation-evoked elbow movements were assessed quantitatively. With increasing stimulus current, each of these parameters increased monotonically until saturation occurred. The spread of intrastriatal microstimulation currents was found to be comparable to that reported for motor cortex. The effective radius of 40-microA putamen microstimulation currents was estimated to be approximately 150 micron. This effectively rules out the possibility of current spread to the internal capsule. Microstimulation effects were abolished by fiber-sparing lesions produced by microinjections of the neurotoxin ibotenic acid. Moreover, chronaxie measurements in putamen (327 +/- 47 microseconds) were significantly higher than for capsular stimulation (150 +/- 32 microseconds). These observations are consistent with the proposal that movements evoked by putamen microstimulation resulted from activation of putamen output neurons. On the other hand, a possible contribution from the antidromic activation of corticostriate afferent terminals or axons cannot be excluded.
Keywords
Related Publications
Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET
The functional anatomy of motor skill acquisition was investigated in six normal human subjects who learned to perform a pursuit rotor task with their dominant right hand during...
Functional magnetic resonance imaging of complex human movements
Functional magnetic resonance imaging (FMRI) is a new, noninvasive imaging tool thought to measure changes related to regional cerebral blood flow (rCBF). Previous FMRI studies ...
Inducible MicroRNA-223 Down-Regulation Promotes TLR-Triggered IL-6 and IL-1β Production in Macrophages by Targeting STAT3
MicroRNAs are small non-coding RNA molecules that regulate gene expression by either translational inhibition or mRNA degradation. MicroRNAs play pivotal roles in the regulation...
Supplementary motor area and other cortical areas in organization of voluntary movements in man
1. Previous studies in man have revealed a coupling between the regional cerebral blood flow (rCBF) and the regional cerebral metabolic rate for oxygen. In normal man, increases...
Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex
1. We examined the spatiotemporal organization of ongoing activity in cat visual areas 17 and 18, in relation to the spontaneous activity of individual neurons. To search for co...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 53
- Issue
- 6
- Pages
- 1401-1416
- Citations
- 140
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1152/jn.1985.53.6.1401