Keywords

Missing dataProjection (relational algebra)Set (abstract data type)Computer scienceData setData miningStatisticsArtificial intelligenceMathematicsAlgorithmMachine learning

Affiliated Institutions

Related Publications

Principal component analysis

Abstract Principal component analysis (PCA) is a multivariate technique that analyzes a data table in which observations are described by several inter‐correlated quantitative d...

2010 Wiley Interdisciplinary Reviews Compu... 9554 citations

Publication Info

Year
1996
Type
article
Volume
35
Issue
1
Pages
45-65
Citations
353
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

353
OpenAlex

Cite This

Philip R. Nelson, Paul A. Taylor, John F. MacGregor (1996). Missing data methods in PCA and PLS: Score calculations with incomplete observations. Chemometrics and Intelligent Laboratory Systems , 35 (1) , 45-65. https://doi.org/10.1016/s0169-7439(96)00007-x

Identifiers

DOI
10.1016/s0169-7439(96)00007-x