Abstract

A high-dimensional shape transformation posed in a mass-preserving framework is used as a morphological signature of a brain image. Population differences with complex spatial patterns are then determined by applying a nonlinear support vector machine (SVM) pattern classification method to the morphological signatures. Significant reduction of the dimensionality of the morphological signatures is achieved via wavelet decomposition and feature reduction methods. Applying the method to MR images with simulated atrophy shows that the method can correctly detect subtle and spatially complex atrophy, even when the simulated atrophy represents only a 5% variation from the original image. Applying this method to actual MR images shows that brains can be correctly determined to be male or female with a successful classification rate of 97%, using the leave-one-out method. This proposed method also shows a high classification rate for old adults' age classification, even under difficult test scenarios. The main characteristic of the proposed methodology is that, by applying multivariate pattern classification methods, it can detect subtle and spatially complex patterns of morphological group differences which are often not detectable by voxel-based morphometric methods, because these methods analyze morphological measurements voxel-by-voxel and do not consider the entirety of the data simultaneously.

Keywords

Pattern recognition (psychology)Artificial intelligenceVoxelSupport vector machineDimensionality reductionComputer scienceTransformation (genetics)WaveletMultivariate statisticsPopulationFeature (linguistics)Curse of dimensionalityFeature vectorMathematicsMachine learningBiology

MeSH Terms

AgedAged80 and overArtificial IntelligenceAtrophyBrainBrain MappingComputer SimulationFemaleFourier AnalysisHumansImage ProcessingComputer-AssistedImagingThree-DimensionalLongitudinal StudiesMagnetic Resonance ImagingMaleMiddle AgedMultivariate AnalysisNonlinear DynamicsNumerical AnalysisComputer-AssistedReproducibility of ResultsSoftware

Affiliated Institutions

Related Publications

Publication Info

Year
2003
Type
article
Volume
21
Issue
1
Pages
46-57
Citations
344
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

344
OpenAlex
11
Influential
278
CrossRef

Cite This

Zhiqiang Lao, Dinggang Shen, Zhong Xue et al. (2003). Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage , 21 (1) , 46-57. https://doi.org/10.1016/j.neuroimage.2003.09.027

Identifiers

DOI
10.1016/j.neuroimage.2003.09.027
PMID
14741641

Data Quality

Data completeness: 81%