Abstract
▪ Abstract The information on the chemical compositions of stars encoded in their spectra plays a central role in contemporary astrophysics. Stellar element abundances are, however, not observed: to decipher the spectral fingerprints in terms of abundances requires realistic models for the stellar atmospheres and the line-formation processes. Still today, the vast majority of abundance analyses of late-type stars rely on one-dimensional (1D), hydrostatic model atmospheres and the assumption of local thermodynamic equilibrium (LTE). In this review possible systematic errors in studies of F-, G- and K-type stars introduced by these questionable approximations are discussed. Departures from LTE are commonplace and often quite severe, in particular for low surface gravities or metallicities, with minority species and low-excitation transitions being the most vulnerable. Recently, time-dependent, 3D, hydrodynamical model atmospheres have started to be employed for stellar abundance purposes, with large differences compared with 1D modeling found in particular for metal-poor stars. An assessment of non-LTE and 3D effects for individual elements as well as on the estimated stellar parameters is presented.
Keywords
Affiliated Institutions
Related Publications
Model atmospheres for M (sub)dwarf stars. 1: The base model grid
We have calculated a grid of more than 700 model atmospheres valid for a wide range of parameters encompassing the coolest known M~dwarfs, M~subdwarfs and brown dwarf candidates...
Non-LTE model atmospheres for central stars of planetary nebulae
A grid of hot non-LTE model atmospheres with H and He opacity sources has been calculated. The emergent fluxes, together with integrals required for Zanstra and Energy-Balance m...
Stellar population synthesis at the resolution of 2003
We present a new model for computing the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range...
The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum
We present the first results on the history of star formation in the universe based on the 'cosmic spectrum,' in particular the volume-averaged, luminosity-weighted, stellar abs...
Simulation of Stellar Objects in SDSS Color Space
We present a simulation of the spatial, luminosity and spectral distributions of four types of stellar objects. We simulate: (1) Galactic stars, based on a Galactic structure mo...
Publication Info
- Year
- 2005
- Type
- article
- Volume
- 43
- Issue
- 1
- Pages
- 481-530
- Citations
- 688
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1146/annurev.astro.42.053102.134001