Abstract
Multiphoton microscopy (MPM) has found a niche in the world of biological imaging as the best noninvasive means of fluorescence microscopy in tissue explants and living animals. Coupled with transgenic mouse models of disease and 'smart' genetically encoded fluorescent indicators, its use is now increasing exponentially. Properly applied, it is capable of measuring calcium transients 500 microm deep in a mouse brain, or quantifying blood flow by imaging shadows of blood cells as they race through capillaries. With the multitude of possibilities afforded by variations of nonlinear optics and localized photochemistry, it is possible to image collagen fibrils directly within tissue through nonlinear scattering, or release caged compounds in sub-femtoliter volumes.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
Evaluation of the Phase Contrast Microscopy Method for the Detection of Fibrous and Other Elongated Mineral Particulates by Comparison With a STEM Technique
The USPHS/NIOSH Membrane Filter Method is used to monitor for asbestos in occupational and mining atmospheres, and employs the phase-contrast optical microscope (PCM) that under...
Imaging of single molecule diffusion.
In recent years observations at the level of individual atoms and molecules became possible by microscopy and spectroscopy. Imaging of single fluorescence molecules has been ach...
Publication Info
- Year
- 2003
- Type
- review
- Volume
- 21
- Issue
- 11
- Pages
- 1369-1377
- Citations
- 3752
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1038/nbt899
- PMID
- 14595365