Abstract
A perturbation theory is developed for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation. It is shown by this development that the first order correction for the energy and the charge density of the system is zero. The expression for the second-order correction for the energy greatly simplifies because of the special property of the zero-order solution. It is pointed out that the development of the higher approximation involves only calculations based on a definite one-body problem.
Keywords
Affiliated Institutions
Related Publications
Self-Consistent Equations Including Exchange and Correlation Effects
From a theory of Hohenberg and Kohn, approximation methods for treating an inhomogeneous system of interacting electrons are developed. These methods are exact for systems of sl...
Improved <i>a</i> <i>b</i> <i>i</i> <i>n</i> <i>i</i> <i>t</i> <i>i</i> <i>o</i> effective potentials for Ar, Kr, and Xe with applications to their homonuclear dimers
Effective core potentials for the Ar, Kr, and Xe atoms derived from numerical Hartree–Fock and Dirac–Hartree–Fock wave functions are applied in SCF and CI calculations of homonu...
Magnetic Effects and the Hartree-Fock Equation
The Hartree-Fock equations state that each electron in an atom or molecular system should move in a different potential. In some cases, particularly magnetic cases, this leads t...
Analytical first and second energy derivatives of the generalized conductorlike screening model for free energy of solvation
We present analytical expressions for the first and second energy derivatives of our recently proposed generalized conductorlike screening model (GCOSMO) for free energy of solv...
Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism
The aim of this paper is to advocate the usefulness of the spin-density-functional (SDF) formalism. The generalization of the Hohenberg-Kohn-Sham scheme to and SDF formalism is ...
Publication Info
- Year
- 1934
- Type
- article
- Volume
- 46
- Issue
- 7
- Pages
- 618-622
- Citations
- 14376
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrev.46.618