Abstract

Background— Recent evidence has suggested that reactive oxygen species are important signaling molecules in vascular cells and play a pivotal role in the development of vascular diseases. The activity of NAD(P)H oxidase has been identified as the major source of reactive oxygen species in vascular endothelial cells. However, the precise molecular structure and the mechanism of activation of the oxidase have remained poorly understood. Methods and Results— Here, we investigated the molecular identities and the superoxide-producing activity of endothelial NAD(P)H oxidase. We found that Nox4, a homologue of gp91phox/Nox2, was abundantly expressed in endothelial cells. The expression of Nox4 in endothelial cells markedly exceeded that of other Nox proteins, including gp91phox/Nox2, and was affected by cell growth. Using electron spin resonance and chemiluminescence, we measured the superoxide production and found that the endothelial membranes had an NAD(P)H-dependent superoxide-producing activity comparable to that of the neutrophil membranes, whereas the activity was not enhanced by the 2 recombinant proteins p47phox and p67phox, in contrast to that of the neutrophil membranes. Downregulation of Nox4 by an antisense oligonucleotide reduced superoxide production in endothelial cells in vivo and in vitro. Conclusions— These findings suggest that Nox4 may function as the major catalytic component of an endothelial NAD(P)H oxidase.

Keywords

SuperoxideNAD(P)H oxidaseNOX4NAD+ kinaseNADPH oxidaseReactive oxygen speciesOxidase testEndothelial stem cellBiochemistryP22phoxCell biologyBiologyChemistryMolecular biologyEnzymeIn vitro

Affiliated Institutions

Related Publications

Publication Info

Year
2004
Type
article
Volume
109
Issue
2
Pages
227-233
Citations
486
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

486
OpenAlex

Cite This

Tetsuro Ago, Takanari Kitazono, Hiroaki Ooboshi et al. (2004). Nox4 as the Major Catalytic Component of an Endothelial NAD(P)H Oxidase. Circulation , 109 (2) , 227-233. https://doi.org/10.1161/01.cir.0000105680.92873.70

Identifiers

DOI
10.1161/01.cir.0000105680.92873.70