Abstract
The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is a key regulator of the cellular antioxidant response, controlling the expression of genes that counteract oxidative and electrophilic stresses. Many pathological conditions are linked to imbalances in redox homeostasis, illustrating the important role of antioxidant defense systems in preventing the pathogenic effects associated with the accumulation of reactive species. In particular, it is becoming increasingly apparent that the accumulation of lipid peroxides has an important role in driving the pathogenesis of multiple disease states. A key example of this is the recent discovery of a novel form of cell death termed ferroptosis. Ferroptosis is an iron-dependent, lipid peroxidation-driven cell death cascade that has become a key target in the development of anti-cancer therapies, as well as the prevention of neurodegenerative and cardiovascular diseases. In this review, we will provide a brief overview of lipid peroxidation, as well as key components involved in the ferroptotic cascade. We will also highlight the role of the NRF2 signaling pathway in mediating lipid peroxidation and ferroptosis, focusing on established NRF2 target genes that mitigate these pathways, as well as the relevance of the NRF2-lipid peroxidation-ferroptosis axis in disease.
Keywords
MeSH Terms
Affiliated Institutions
Related Publications
Oxidative stress, aging, and diseases
Reactive oxygen and nitrogen species (RONS) are produced by several endogenous and exogenous processes, and their negative effects are neutralized by antioxidant defenses. Oxida...
Free Radicals in the Physiological Control of Cell Function
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate...
Tumor necrosis factor α induces a caspase-independent death pathway in human neutrophils
Tumor necrosis factor α (TNF-α) is a cytokine with multiple roles in the immune system, including the induction and potentiation of cellular functions in neutrophils (PMNs). TNF...
Involvement of Caspases in Neutrophil Apoptosis: Regulation by Reactive Oxygen Species
Abstract Human neutrophils have a short half-life and are believed to die by apoptosis or programmed cell death both in vivo and in vitro. We found that caspases are activated i...
Publication Info
- Year
- 2019
- Type
- review
- Volume
- 23
- Pages
- 101107-101107
- Citations
- 2094
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1016/j.redox.2019.101107
- PMID
- 30692038
- PMCID
- PMC6859567