Abstract
Following a suggestion by Orzel et al. [Science 291, 2386 (2001)]], we analyze bosons in an optical lattice undergoing a sudden parameter change from the Mott to superfluid phase. We introduce a modified coherent states path integral to describe both phases. The saddle point theory yields collective oscillations of the uniform superfluid order parameter. We calculate its damping rate by phason pair emission. In two dimensions the overdamped region largely overlaps with the quantum critical region. Measurements of critical dynamics on the Mott side are proposed.
Keywords
Affiliated Institutions
Related Publications
Ab Initio Calculations on the Electronically Excited States of Small Helium Clusters
The vertical excitation energies of small helium clusters, He(7) and He(25), have been calculated using configuration interaction singles, and the character of the excited state...
Mechanical Action of Light on Atoms
Control of atomic motion with resonant laser light is the most interesting field of research which is rapidly expanding. The book discusses the latest theoretical and experiment...
The semiclassical theory of laser cooling
This paper reviews the basic theory of the mechanical action of light in resonant interaction with atoms. At present the main application is laser cooling, but the approach is a...
Approximate relativistic corrections to atomic radial wave functions*
The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a loca...
A point‐charge force field for molecular mechanics simulations of proteins based on condensed‐phase quantum mechanical calculations
Abstract Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic acids. Here we report the development of a third‐generation point...
Publication Info
- Year
- 2002
- Type
- article
- Volume
- 89
- Issue
- 25
- Pages
- 250404-250404
- Citations
- 217
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevlett.89.250404