Abstract
A partial spline model is a model for a response as a function of several variables, which is the sum of a smooth function of several variables and a parametric function of the same plus possibly some other variables. Partial spline models in one and several variables, with direct and indirect data, with Gaussian errors and as an extension of GLIM to partially penalized GLIM models are described. Application to the modeling of change of regime in several variables is described. Interaction splines are introduced and described and their potential use for modeling non-linear interactions between variables by semiparametric methods is noted. Reference is made to recent work in efficient computational methods.
Keywords
Affiliated Institutions
Related Publications
Spline Smoothing: The Equivalent Variable Kernel Method
The spline smoothing approach to nonparametric regression and curve estimation is considered. It is shown that, in a certain sense, spline smoothing corresponds approximately to...
Linear Smoothers and Additive Models
We study linear smoothers and their use in building nonparametric regression models. In the first part of this paper we examine certain aspects of linear smoothers for scatterpl...
Semiparametric ARCH Models
This article introduces a semiparametric autoregressive conditional heteroscedasticity (ARCH) model that has conditional first and second moments given by autoregressive moving ...
Multivariate Adaptive Regression Splines
A new method is presented for flexible regression modeling of high dimensional data. The model takes the form of an expansion in product spline basis functions, where the number...
Multivariate Smoothing Spline Functions
Given data $z_i = g(t_i ) + \varepsilon _i , 1 \leqq i \leqq n$, where g is the unknown function, the $t_i $ are known d-dimensional variables in a domain $\Omega $, and the $\v...
Publication Info
- Year
- 1986
- Type
- article
- Citations
- 48
- Access
- Closed