Abstract
The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electron wave propagation in real crystals has proven to be a very fruitful one. Initial efforts were motivated by the prospect of a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic waves are forbidden, irrespective of propagation direction in space. Today many new ideas and applications are being pursued in two and three dimensions, and in metallic, dielectric and acoustic structures, etc. The author reviews the early motivations for this work, which were derived from the need for a photonic band gap in quantum optics. This led to a series of experimental and theoretical searches for the elusive photonic band-gap structures, those three-dimensionally periodic dielectric structures which are to photon waves what semiconductor crystals are to electron waves. Then he describes how the photonic semiconductor can be 'doped', producing tiny electromagnetic cavities. Finally he summarizes some of the anticipated implications of photonic band structure for quantum electronics and the prospects for the creation of photonic crystals in the optical domain.
Keywords
Related Publications
Inhibited Spontaneous Emission in Solid-State Physics and Electronics
It has been recognized for some time that the spontaneous emission by atoms is not necessarily a fixed and immutable property of the coupling between matter and space, but that ...
Optical Properties and Electronic Structure of Amorphous Germanium
Abstract The optical constants of amorphous Ge are determined for the photon energies from 0.08 to 1.6 eV. From 0.08 to 0.5 eV, the absorption is due to k ‐conserving transition...
Electronic States in Vitreous Selenium
The quantum efficiency for photoproduction of electrons and holes in vitreous selenium has been measured at room temperature for photon energies between 2.0 and 3.1 eV. Electron...
The Electronic Structure of Semiconductor Nanocrystals
▪ Abstract We review the rapid progress made in our understanding of the crystal properties of semiconductors and nanocrystals focussing on theoretical results obtained within t...
Strong localization of photons in certain disordered dielectric superlattices
A new mechanism for strong Anderson localization of photons in carefully prepared disordered dielectric superlattices with an everywhere real positive dielectric constant is des...
Publication Info
- Year
- 1993
- Type
- article
- Volume
- 5
- Issue
- 16
- Pages
- 2443-2460
- Citations
- 241
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1088/0953-8984/5/16/004