Abstract

PoseBusters assesses molecular poses using steric and energetic criteria. We find that classical protein-ligand docking tools currently still outperform deep learning-based methods.

Keywords

Docking (animal)Computer scienceArtificial intelligenceAutoDockForce field (fiction)Python (programming language)Steric effectsMachine learningAlgorithmChemistryStereochemistry

Related Publications

Publication Info

Year
2023
Type
article
Volume
15
Issue
9
Pages
3130-3139
Citations
204
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

204
OpenAlex

Cite This

Martin Buttenschoen, Garrett M. Morris, Charlotte M. Deane (2023). PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chemical Science , 15 (9) , 3130-3139. https://doi.org/10.1039/d3sc04185a

Identifiers

DOI
10.1039/d3sc04185a