Abstract

Abstract All‐solid‐state lithium batteries (ASSLBs) have the potential to revolutionize battery systems for electric vehicles due to their benefits in safety, energy density, packaging, and operable temperature range. As the key component in ASSLBs, inorganic lithium‐ion‐based solid‐state electrolytes (SSEs) have attracted great interest, and advances in SSEs are vital to deliver the promise of ASSLBs. Herein, a survey of emerging SSEs is presented, and ion‐transport mechanisms are briefly discussed. Techniques for increasing the ionic conductivity of SSEs, including substitution and mechanical strain treatment, are highlighted. Recent advances in various classes of SSEs enabled by different preparation methods are described. Then, the issues of chemical stabilities, electrochemical compatibility, and the interfaces between electrodes and SSEs are focused on. A variety of research addressing these issues is outlined accordingly. Given their importance for next‐generation battery systems and transportation style, a perspective on the current challenges and opportunities is provided, and suggestions for future research directions for SSEs and ASSLBs are suggested.

Keywords

NanotechnologyMaterials scienceBattery (electricity)Lithium (medication)Energy densityEngineering physicsEngineering

Affiliated Institutions

Related Publications

Publication Info

Year
2018
Type
review
Volume
30
Issue
17
Pages
e1705702-e1705702
Citations
1243
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

1243
OpenAlex

Cite This

Zhonghui Gao, Hua‐Bin Sun, Lin Fu et al. (2018). Promises, Challenges, and Recent Progress of Inorganic Solid‐State Electrolytes for All‐Solid‐State Lithium Batteries. Advanced Materials , 30 (17) , e1705702-e1705702. https://doi.org/10.1002/adma.201705702

Identifiers

DOI
10.1002/adma.201705702