Abstract

The addition of silicon to hydrogenated amorphous carbon can have the advantageous effect of lowering the compressive stress, improving the thermal stability of its hydrogen, and maintaining a low friction coefficient up to high humidity. Most experiments to date have been on hydrogenated amorphous carbon–silicon alloys (a-C1−xSix:H) deposited by rf plasma enhanced chemical vapor deposition. This method gives alloys with sizeable hydrogen content and only moderate hardness. Here we use a high plasma density source known as the electron cyclotron wave resonance source to prepare films with higher sp3 content and lower hydrogen content. The composition and bonding in the alloys is determined by x-ray photoelectron spectroscopy, Rutherford backscattering, elastic recoil detection analysis, visible and ultraviolet (UV) Raman spectroscopy, infrared spectroscopy, and x-ray reflectivity. We find that it is possible to produce relatively hard, low stress, low friction, almost humidity insensitive a-C1−xSix:H alloys with a good optical transparency and a band gap well over 2.5 eV. The friction behavior and friction mechanism of these alloys are studied and compared with that of a-C:H, ta-C:H, and ta-C. We show how UV Raman spectroscopy allows the direct detection of Si–C, Si–Hx, and C–Hx vibrations, not seen in visible Raman spectra.

Keywords

Elastic recoil detectionMaterials scienceRaman spectroscopySiliconAnalytical Chemistry (journal)HydrogenElectron cyclotron resonanceAmorphous carbonX-ray photoelectron spectroscopyAmorphous siliconAmorphous solidChemical vapor depositionThin filmPlasmaCrystalline siliconNuclear magnetic resonanceChemistryMetallurgyOptoelectronicsCrystallographyOpticsNanotechnology

Affiliated Institutions

Related Publications

Publication Info

Year
2001
Type
article
Volume
90
Issue
10
Pages
5002-5012
Citations
100
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

100
OpenAlex

Cite This

Benoît Racine, Andrea C. Ferrari, N. A. Morrison et al. (2001). Properties of amorphous carbon–silicon alloys deposited by a high plasma density source. Journal of Applied Physics , 90 (10) , 5002-5012. https://doi.org/10.1063/1.1406966

Identifiers

DOI
10.1063/1.1406966