Abstract
Protein structures generally consist of favorable folding motifs formed by specific arrangements of secondary structure elements. Similar architectures can be adopted by different amino acids sequences, although the details of the structures vary. It has long been known that despite the sequence variability, there is a striking preferential conservation of the hydrophobic character of the amino acids at the buried positions of these folding motifs. Differences in the sizes of the side-chains are accommodated by movements of the secondary structure elements with respect to each other, leading to compact packing. Scanning protein-protein interfaces reveals that similar architectures are also observed at and around their interacting surfaces, with preservation of the hydrophobic character, although not to the same extent. The general forces that determine the origin of the native structures of proteins have been investigated intensively. The major non-bonded forces operating on a protein chain as it folds into a three-dimensional structure are likely to be packing, the hydrophobic effect, and electrostatic interactions. While the substantial hydrophobic forces lead to a compact conformation, they are also nonspecific and cannot serve as a guide to a conformationally unique structure. For the general folding problem, it thus appears that packing is a prime candidate for determining a particular fold. Specific hydrogen-bonding patterns and salt-bridges have also been proposed to play a role. Inspection of protein-protein interfaces reveals that the hallmarks governing single chain protein structures also determine their interactions, suggesting that similar principles underlie protein folding and protein-protein associations. This review focuses on some aspects of protein-protein interfaces, particularly on the architectures and their interactions. These are compared with those present in protein monomers. This task is facilitated by the recently compiled, non-redundant structural dataset of protein-protein interfaces derived from the crystallographic database. In particular, although current view holds that protein-protein interfaces and interactions are similar to those found in the conformations of single-chain proteins, this review brings forth the differences as well. Not only is it logical that such differences would exist, it is these differences that further illuminate protein folding on the one hand and protein-protein recognition on the other. These are also particularly important in considering inhibitor (ligand) design.
Keywords
Affiliated Institutions
Related Publications
The structure of interfaces between subunits of dimeric and tetrameric proteins
The structures of the interfaces of nine dimeric and nine tetrameric proteins have been analyzed and have been seen to follow general principles. These interfaces are combinatio...
An investigation of protein subunit and domain interfaces
Protein structures were collected from the Brookhaven Database of tertiary architectures that displayed oligomeric association (24 molecules) or whose polypeptide folding reveal...
A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications
Abstract Here, we present a diverse, structurally nonredundant data set of two‐chain protein–protein interfaces derived from the PDB. Using a sequence order‐independent structur...
Accurate prediction of protein structures and interactions using a three-track neural network
Deep learning takes on protein folding In 1972, Anfinsen won a Nobel prize for demonstrating a connection between a protein’s amino acid sequence and its three-dimensional struc...
ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
Molecular mechanics is powerful for its speed in atomistic simulations, but an accurate force field is required. The Amber ff99SB force field improved protein secondary structur...
Publication Info
- Year
- 1996
- Type
- review
- Volume
- 31
- Issue
- 2
- Pages
- 127-152
- Citations
- 115
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.3109/10409239609106582