Abstract
▪ Abstract Proton-coupled electron transfer (PCET) is an important mechanism for charge transfer in a wide variety of systems including biology- and materials-oriented venues. We review several areas where the transfer of an electron and proton is tightly coupled and discuss model systems that can provide an experimental basis for a test of PCET theory. In a PCET reaction, the electron and proton may transfer consecutively (ET/PT) or concertedly (ETPT). The distinction between these processes is formulated, and rate-constant expressions for the two reaction channels are presented. Methods for the evaluation of these rate constants are discussed that are based on dielectric continuum theory. Electron donor hydrogen-bonded-interface electron acceptor systems displaying PCET reactivity are presented, and the rate-constant expressions corresponding to the ETPT and ET/PT channels for several model reaction complexes are evaluated.
Keywords
Affiliated Institutions
Related Publications
Supramolecular Chemistry
Part 1 From molecular to supramolecular chemistry: concepts and language of supramolecular chemistry. Part 2 Molecular recognition: recognition, information, complementarity mol...
Proton Transfer, Acid‐Base Catalysis, and Enzymatic Hydrolysis. Part I: ELEMENTARY PROCESSES
Abstract The proton occupies a special position as a promoter and mediator in chemical reactions occurring in solution. Many reactions in organic chemistry are catalysed by acid...
Ultrafast Electron Transfer Dynamics from Molecular Adsorbates to Semiconductor Nanocrystalline Thin Films
Interfacial electron transfer (ET) between semiconductor nanomaterials and molecular adsorbates is an important fundamental process that is relevant to applications of these mat...
The structural enzymology of proton-transfer reactions
The simplest chemical transformations in metabolism are the proton transfer reactions exemplified by certain isomerases and racemases. We have been studying three such enzymes t...
Analytical derivatives for molecular solutes. I. Hartree–Fock energy first derivatives with respect to external parameters in the polarizable continuum model
Analytical expressions for the derivatives of the free energy of solution of molecular solutes with respect to the dielectric constant and to a parameter defining the size of th...
Publication Info
- Year
- 1998
- Type
- review
- Volume
- 49
- Issue
- 1
- Pages
- 337-369
- Citations
- 839
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1146/annurev.physchem.49.1.337