Abstract
Abstract Adequate initial configurations for molecular dynamics simulations consist of arrangements of molecules distributed in space in such a way to approximately represent the system's overall structure. In order that the simulations are not disrupted by large van der Waals repulsive interactions, atoms from different molecules must keep safe pairwise distances. Obtaining such a molecular arrangement can be considered a packing problem: Each type molecule must satisfy spatial constraints related to the geometry of the system, and the distance between atoms of different molecules must be greater than some specified tolerance. We have developed a code able to pack millions of atoms, grouped in arbitrarily complex molecules, inside a variety of three‐dimensional regions. The regions may be intersections of spheres, ellipses, cylinders, planes, or boxes. The user must provide only the structure of one molecule of each type and the geometrical constraints that each type of molecule must satisfy. Building complex mixtures, interfaces, solvating biomolecules in water, other solvents, or mixtures of solvents, is straightforward. In addition, different atoms belonging to the same molecule may also be restricted to different spatial regions, in such a way that more ordered molecular arrangements can be built, as micelles, lipid double‐layers, etc. The packing time for state‐of‐the‐art molecular dynamics systems varies from a few seconds to a few minutes in a personal computer. The input files are simple and currently compatible with PDB, Tinker, Molden, or Moldy coordinate files. The package is distributed as free software and can be downloaded from http://www.ime.unicamp.br/∼martinez/packmol/ . © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009
Keywords
Affiliated Institutions
Related Publications
A Gibbs free energy correlation for automated docking of carbohydrates
Abstract Thermodynamic information can be inferred from static atomic configurations. To model the thermodynamics of carbohydrate binding to proteins accurately, a large binding...
MolProbity: all-atom contacts and structure validation for proteins and nucleic acids
MolProbity is a general-purpose web server offering quality validation for 3D structures of proteins, nucleic acids and complexes. It provides detailed all-atom contact analysis...
GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set
Abstract The algorithm used by the program GEPOL to compute the Molecular Surface (MS), as defined by Richards, is presented in detail. GEPOL starts like other algorithms from a...
Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions
This article defines the parameterization and performance of MMFF94 for intermolecular interactions. It specifies the novel “buffered” functional forms used for treating van der...
A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules
Abstract: We present the derivation of a new molecular mechanical force field for simulating the structures, conformational energies, and interaction energies of proteins, nucle...
Publication Info
- Year
- 2009
- Type
- article
- Volume
- 30
- Issue
- 13
- Pages
- 2157-2164
- Citations
- 8462
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1002/jcc.21224