Abstract
We have examined the properties of neurons in three subdivisions of the pulvinar of alert, trained rhesus monkeys 1) an inferior, retinotopically mapped area (PI), 2) a lateral, retinotopically organized region (PL), and 3) a dorsomedial visual portion of the lateral pulvinar (Pdm), which has a crude retinotopic organization. We tested the neurons for visual responses to stationary and moving stimuli and for changes in these responses produced by behavioral manipulations. All areas contain cells sensitive to stimulus orientation as well as neurons selective for the direction of stimulus movement; however, the majority of cells in all three regions are either broadly tuned or nonselective for these attributes. Nearly all cells respond to stimulus onset, a significant number also give a response to stimulus termination, and rarely a cell gives only off responses. Nearly all cells increase their discharge rate to visual stimuli. Receptive fields in the two retinotopically mapped regions, PI and PL, have well-defined borders. The sizes of these receptive fields show a positive correlation with the eccentricity of the receptive fields. The receptive fields in the remaining region, Pdm, are frequently very large, but with these large fields excluded, show a similar correlation with eccentricity. All pulvinar cells tested (n = 20) were mapped in retinal coordinates; the receptive fields are positioned in relation to the retina. We found no cells with gaze-gated characteristics (2), nor cells mapped in a spatial coordinate system. The response latencies in PI and PL are shorter and less variable than the latencies in Pdm. Active use of a stimulus can produce an enhancement or attenuation of the visual response. Eye-movement modulation was found in all three subdivisions in about equal frequencies. Attentional modulation was common in Pdm and was rare in PI and PL. The modulation is spatially selective in Pdm and nonselective in PI for a small number of tested cells. These data demonstrate functional differences between Pdm and the other two areas and suggest that Pdm plays a role in selective visual attention, whereas PI and PL probably contribute to other aspects of visual perception.
Keywords
Affiliated Institutions
Related Publications
Hematopoietic Stem Cells Need Two Signals to Prevent Apoptosis; Bcl-2 Can Provide One of These, Kitl/C-KIT Signaling the Other
Growth factors can cause cells to proliferate, differentiate, survive, or die. Distinguishing between these responses is difficult in multicellular, multiparameter systems. Yet ...
Directional selectivity and its use in early visual processing
The construction of directionally selective units and their use in the processing of visual motion are considered.
Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex
1. We examined the spatiotemporal organization of ongoing activity in cat visual areas 17 and 18, in relation to the spontaneous activity of individual neurons. To search for co...
An exploratory descriptive study of the illness attitude and knowledge of breast cancer screening among African American women: young and elderly
In the catfish retina, horizontal cells that receive inputs exclusively from red-sensitive cones are the only neurons that accumulate exogenous gamma-aminobutyric acid under our...
Error probability bounds for M-PSK and M-DPSK and selective fading diversity channels
A method is described for obtaining tight closed-form bounds on the probability of error for M-ary phase-shift keying (M-PSK) and M-ary differential phase-shift keying (M-DPSK) ...
Publication Info
- Year
- 1985
- Type
- article
- Volume
- 54
- Issue
- 4
- Pages
- 867-886
- Citations
- 388
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1152/jn.1985.54.4.867