Abstract
When elementary quantum systems, such as polarized photons, are used to transmit digital information, the uncertainty principle gives rise to novel cryptographic phenomena unachievable with traditional transmission media, e.g. a communications channel on which it is impossible in principle to eavesdrop without a high probability of disturbing the transmission in such a way as to be detected. Such a quantum channel can be used in conjunction with ordinary insecure classical channels to distribute random key information between two users with the assurance that it remains unknown to anyone else, even when the users share no secret information initially. We also present a protocol for coin-tossing by exchange of quantum messages, which is secure against traditional kinds of cheating, even by an opponent with unlimited computing power, but ironically can be subverted by use of a still subtler quantum phenomenon, the Einstein-Podolsky-Rosen paradox.
Keywords
Related Publications
Updated guidance for trusted systematic reviews: a new edition of the Cochrane Handbook for Systematic Reviews of Interventions
On a shelf in the sunny, open‐plan office of Cochrane Australia in Melbourne, there's a large, white ring‐binder that, it's fair to say, hasn't been opened in a while. It's a pr...
Random Allocation in Observational Data
Conventional observational epidemiology has an unenviable reputation for generating false-positive findings,1,2 or "scares," as others call them.3 In 1993, for example, the New ...
Publication Info
- Year
- 2020
- Type
- article
- Pages
- 175-179
- Citations
- 5306
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.48550/arxiv.2003.06557