Abstract
We have succeeded in fabricating the mostly crystallized Si:H materials having a wide optical band gap of up to 2.4 eV by means of a reactive sputtering technique with a low substrate temperature of \ensuremath{\sim}100 K. The structural analysis showed that the materials consist of small crystalline silicon particles surrounded by hydrogen atoms, whose diameters are 20--30 A\r{}. The widening of the optical band gap can be explained by a three-dimensional quantum-well effect in the small particles.
Keywords
Affiliated Institutions
Related Publications
Optical Properties and Electronic Structure of Amorphous Germanium
Abstract The optical constants of amorphous Ge are determined for the photon energies from 0.08 to 1.6 eV. From 0.08 to 0.5 eV, the absorption is due to k ‐conserving transition...
The Electronic Structure of Semiconductor Nanocrystals
▪ Abstract We review the rapid progress made in our understanding of the crystal properties of semiconductors and nanocrystals focussing on theoretical results obtained within t...
Semiconductor Clusters, Nanocrystals, and Quantum Dots
Current research into semiconductor clusters is focused on the properties of quantum dots—fragments of semiconductor consisting of hundreds to many thousands of atoms—with the b...
Electronic States in Vitreous Selenium
The quantum efficiency for photoproduction of electrons and holes in vitreous selenium has been measured at room temperature for photon energies between 2.0 and 3.1 eV. Electron...
Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles
Recently, inorganic and hybrid light absorbers such as quantum dots and organometal halide perovskites have been studied and applied in fabricating thin-film photovoltaic device...
Publication Info
- Year
- 1988
- Type
- article
- Volume
- 38
- Issue
- 8
- Pages
- 5726-5729
- Citations
- 451
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevb.38.5726