Quantum supremacy using a programmable superconducting processor

Frank Arute , Kunal Arya , Ryan Babbush , Frank Arute , Kunal Arya , Ryan Babbush , Dave Bacon , Joseph C. Bardin , Rami Barends , Rupak Biswas , Sergio Boixo , Fernando G. S. L. Brandao , David A. Buell , Brian Burkett , Yu Chen , Zijun Chen , Ben Chiaro , Roberto Collins , William Courtney , Andrew Dunsworth , Edward Farhi , Brooks Foxen , Austin Fowler , Craig Gidney , Marissa Giustina , Rob Graff , Keith Guerin , Steve Habegger , Matthew P. Harrigan , Michael J. Hartmann , Alan Ho , Markus Hoffmann , Trent Huang , Travis S. Humble , Sergei V. Isakov , Evan Jeffrey , Zhang Jiang , Dvir Kafri , Kostyantyn Kechedzhi , Julián Kelly , Paul V. Klimov , Sergey Knysh , Alexander Korotkov , Fedor Kostritsa , David Landhuis , Mike Lindmark , Erik Lucero , Dmitry Lyakh , Salvatore Mandra , Jarrod R. McClean , Matthew McEwen , Anthony Megrant , Xiao Mi , Kristel Michielsen , Masoud Mohseni , Josh Mutus , Ofer Naaman , Matthew Neeley , Charles Neill , Murphy Yuezhen Niu , Eric Ostby , Andre Petukhov , John C. Platt , Chris Quintana , Eleanor G. Rieffel , Pedram Roushan , Nicholas C. Rubin , Daniel Sank , Kevin J. Satzinger , Vadim Smelyanskiy , Kevin J. Sung , Matthew D. Trevithick , Amit Vainsencher , Benjamin Villalonga , Theodore White , Z. Jamie. Yao , Ping Yeh , Adam Zalcman , Hartmut Neven , John M. Martinis , Frank Arute , Kunal Arya , Ryan Babbush , Dave Bacon , Joseph C. Bardin , Rami Barends , Rupak Biswas , Sergio Boixo , Fernando G. S. L. Brandao , David A. Buell , Brian Burkett , Yu Chen , Zijun Chen , Ben Chiaro , Roberto Collins , William Courtney , Andrew Dunsworth , Edward Farhi , Brooks Foxen , Austin Fowler , Craig Gidney , Marissa Giustina , Rob Graff
2019 Nature 6,340 citations

Abstract

The promise of quantum computers is that certain computational tasks might be executed exponentially faster on a quantum processor than on a classical processor1. A fundamental challenge is to build a high-fidelity processor capable of running quantum algorithms in an exponentially large computational space. Here we report the use of a processor with programmable superconducting qubits2–7 to create quantum states on 53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). Measurements from repeated experiments sample the resulting probability distribution, which we verify using classical simulations. Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit a million times—our benchmarks currently indicate that the equivalent task for a state-of-the-art classical supercomputer would take approximately 10,000 years. This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy8–14 for this specific computational task, heralding a much-anticipated computing paradigm. Quantum supremacy is demonstrated using a programmable superconducting processor known as Sycamore, taking approximately 200 seconds to sample one instance of a quantum circuit a million times, which would take a state-of-the-art supercomputer around ten thousand years to compute.

Affiliated Institutions

Related Publications

Publication Info

Year
2019
Type
article
Volume
574
Issue
7779
Pages
505-510
Citations
6340
Access
Closed

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

6340
OpenAlex
236
Influential

Cite This

Frank Arute, Kunal Arya, Ryan Babbush et al. (2019). Quantum supremacy using a programmable superconducting processor. Nature , 574 (7779) , 505-510. https://doi.org/10.1038/s41586-019-1666-5

Identifiers

DOI
10.1038/s41586-019-1666-5
PMID
31645734
arXiv
1910.11333

Data Quality

Data completeness: 79%