Abstract

I. Random Dynamical Systems and Their Generators.- 1. Basic Definitions. Invariant Measures.- 2. Generation.- II. Multiplicative Ergodic Theory.- 3. The Multiplicative Ergodic Theorem in Euclidean Space.- 4. The Multiplicative Ergodic Theorem on Bundles and Manifolds.- 5. The MET for Related Linear and Affine RDS.- 6. RDS on Homogeneous Spaces of the General Linear Group.- III. Smooth Random Dynamical Systems.- 7. Invariant Manifolds.- 8. Normal Forms.- 9. Bifurcation Theory.- IV. Appendices.- Appendix A. Measurable Dynamical Systems.- A.1 Ergodic Theory.- A.2 Stochastic Processes and Dynamical Systems.- A.3 Stationary Processes.- A.4 Markov Processes.- Appendix B. Smooth Dynamical Systems.- B.1 Two-Parameter Flows on a Manifold.- B.4 Autonomous Case: Dynamical Systems.- B.5 Vector Fields and Flows on Manifolds.- References.

Keywords

Statistical physicsComputer sciencePhysics

Related Publications

Introduction to Matrix Analysis

Foreword Preface to the Second Edition Preface 1. Maximization, Minimization, and Motivation 2. Vectors and Matrices 3. Diagonalization and Canonical Forms for Symmetric Matrice...

1960 2970 citations

Publication Info

Year
2020
Type
book-chapter
Pages
117-126
Citations
2211
Access
Closed

Social Impact

Altmetric
PlumX Metrics

Social media, news, blog, policy document mentions

Citation Metrics

2211
OpenAlex
0
Influential
0
CrossRef

Cite This

Ludwig Arnold (2020). Random dynamical systems. Interdisciplinary mathematical sciences , 117-126. https://doi.org/10.1142/9789811228667_0013

Identifiers

DOI
10.1142/9789811228667_0013

Data Quality

Data completeness: 77%