Abstract

Abstract Electrochemical water splitting plays a crucial role in the development of clean and renewable energy production and conversion, which is a promising pathway to reduce social dependence on fossil fuels. Thus, highly active, cost‐efficient, and robust catalysts must be developed to reduce the reaction overpotential and increase electrocatalytic efficiency. In this review, recent research efforts toward developing advanced electrocatalysts based on noble metals with outstanding performance for water splitting catalysis, which is mainly dependent on their structure engineering, are summarized. First, a simple description of the water‐splitting mechanism and some promising structure engineering strategies are given, including heteroatom incorporation, strain engineering, interface/hybrid engineering, and single atomic construction. Then, the underlying relationship between noble metal electronic/geometric structure and performance for water splitting is discussed with the assistance of theoretical simulation. Finally, a personal perspective is provided in order to highlight the challenges and opportunities for developing novel electrocatalysts suitable for a wide range of commercial uses in water splitting for structural engineering applications.

Keywords

Water splittingOverpotentialElectrocatalystMaterials scienceNoble metalNanotechnologyRenewable energyHeteroatomCatalysisStrain engineeringBiochemical engineeringElectrochemistryMetalEngineeringChemistryElectrical engineeringPhysical chemistryPhotocatalysisMetallurgy

Affiliated Institutions

Related Publications

Publication Info

Year
2020
Type
article
Volume
10
Issue
11
Citations
991
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

991
OpenAlex

Cite This

Yingjie Li, Yingjun Sun, Yingnan Qin et al. (2020). Recent Advances on Water‐Splitting Electrocatalysis Mediated by Noble‐Metal‐Based Nanostructured Materials. Advanced Energy Materials , 10 (11) . https://doi.org/10.1002/aenm.201903120

Identifiers

DOI
10.1002/aenm.201903120