Abstract
We introduce a class of probabilistic continuous translation models called Recurrent Continuous Translation Models that are purely based on continuous representations for words, phrases and sentences and do not rely on alignments or phrasal translation units. The models have a generation and a conditioning aspect. The generation of the translation is modelled with a target Recurrent Language Model, whereas the conditioning on the source sentence is modelled with a Convolutional Sentence Model. Through various experiments, we show first that our models obtain a perplexity with respect to gold translations that is > 43% lower than that of stateof-the-art alignment-based translation models. Secondly, we show that they are remarkably sensitive to the word order, syntax, and meaning of the source sentence despite lacking alignments. Finally we show that they match a state-of-the-art system when rescoring n-best lists of translations.
Keywords
Affiliated Institutions
Related Publications
Attention Is All You Need
The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration. The best performing models also co...
ALBERT: A Lite BERT for Self-supervised Learning of Language\n Representations
Increasing model size when pretraining natural language representations often\nresults in improved performance on downstream tasks. However, at some point\nfurther model increas...
GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding
Human ability to understand language is general, flexible, and robust. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-o...
High-Resolution Image Synthesis with Latent Diffusion Models
By decomposing the image formation process into a sequential application of denoising autoencoders, diffusion models (DMs) achieve state-of-the-art synthesis results on image da...
BioBERT: a pre-trained biomedical language representation model for biomedical text mining
Abstract Motivation Biomedical text mining is becoming increasingly important as the number of biomedical documents rapidly grows. With the progress in natural language processi...
Publication Info
- Year
- 2013
- Type
- article
- Pages
- 1700-1709
- Citations
- 1330
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.18653/v1/d13-1176