Abstract
In multiple regression it is shown that parameter estimates based on minimum residual sum of squares have a high probability of being unsatisfactory, if not incorrect, if the prediction vectors are not orthogonal. Proposed is an estimation procedure based on adding small positive quantities to the diagonal of X′X. Introduced is the ridge trace, a method for showing in two dimensions the effects of nonorthogonality. It is then shown how to augment X′X to obtain biased estimates with smaller mean square error.
Keywords
Affiliated Institutions
Related Publications
Regression Shrinkage and Selection Via the Lasso
SUMMARY We propose a new method for estimation in linear models. The ‘lasso’ minimizes the residual sum of squares subject to the sum of the absolute value of the coefficients b...
A Comparison of Least Squares and Latent Root Regression Estimators
Miilticollinesrity among the columns of regressor variables is known to cause severe distortion of the least squares estimates of the parameters in a multiple linear regression ...
Maximum likelihood fitting using ordinary least squares algorithms
Abstract In this paper a general algorithm is provided for maximum likelihood fitting of deterministic models subject to Gaussian‐distributed residual variation (including any t...
On the misuse of residuals in ecology: regression of residuals vs. multiple regression
1 Residuals from linear regressions are used frequently in statistical analysis, often for the purpose of controlling for unwanted effects in multivariable datasets. This paper ...
Bootstrap Methods: Another Look at the Jackknife
We discuss the following problem: given a random sample $\\mathbf{X} = (X_1, X_2, \\cdots, X_n)$ from an unknown probability distribution $F$, estimate the sampling distribution...
Publication Info
- Year
- 1970
- Type
- article
- Volume
- 12
- Issue
- 1
- Pages
- 55-67
- Citations
- 8164
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1080/00401706.1970.10488634