Keywords

Hessian matrixMathematicsMathematical optimizationSubspace topologyGradient methodAlgorithmSample size determinationComputationFunction (biology)Projection (relational algebra)Sample (material)Gradient descentApplied mathematicsComputer scienceArtificial intelligenceStatisticsMathematical analysis

Affiliated Institutions

Related Publications

Publication Info

Year
2012
Type
article
Volume
134
Issue
1
Pages
127-155
Citations
379
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

379
OpenAlex

Cite This

Richard H. Byrd, Gillian M. Chin, Jorge Nocedal et al. (2012). Sample size selection in optimization methods for machine learning. Mathematical Programming , 134 (1) , 127-155. https://doi.org/10.1007/s10107-012-0572-5

Identifiers

DOI
10.1007/s10107-012-0572-5