Abstract

Arguments are presented that the $T=0$ conductance $G$ of a disordered electronic system depends on its length scale $L$ in a universal manner. Asymptotic forms are obtained for the scaling function $\ensuremath{\beta}(G)=\frac{d\mathrm{ln}G}{d\mathrm{ln}L}$, valid for both $G\ensuremath{\ll}{G}_{c}\ensuremath{\simeq}\frac{{e}^{2}}{\ensuremath{\hbar}}$ and $G\ensuremath{\gg}{G}_{c}$. In three dimensions, ${G}_{c}$ is an unstable fixed point. In two dimensions, there is no true metallic behavior; the conductance crosses over smoothly from logarithmic or slower to exponential decrease with $L$.

Keywords

ScalingPhysicsConductanceLogarithmExponential functionDiffusionMathematical physicsCondensed matter physicsFunction (biology)Quantum mechanicsMathematical analysisMathematicsGeometry

Affiliated Institutions

Related Publications

Continuous-time random-walk model of electron transport in nanocrystalline<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">TiO</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow></mml:math>electrodes

Electronic junctions made from porous, nanocrystalline ${\mathrm{TiO}}_{2}$ films in contact with an electrolyte are important for applications such as dye-sensitized solar cell...

1999 Physical review. B, Condensed matter 622 citations

Publication Info

Year
1979
Type
article
Volume
42
Issue
10
Pages
673-676
Citations
5974
Access
Closed

External Links

Social Impact

Social media, news, blog, policy document mentions

Citation Metrics

5974
OpenAlex

Cite This

Elihu Abrahams, Philip W. Anderson, D. C. Licciardello et al. (1979). Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions. Physical Review Letters , 42 (10) , 673-676. https://doi.org/10.1103/physrevlett.42.673

Identifiers

DOI
10.1103/physrevlett.42.673