Abstract
The fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model is used to simulate Hurricane Bob (1991) using grids nested to high resolution (4 km). Tests are conducted to determine the sensitivity of the simulation to the available planetary boundary layer parameterizations, including the bulk aerodynamic, Blackadar, Medium-Range Forecast (MRF) model, and Burk–Thompson boundary layer schemes. Significant sensitivity is seen, with minimum central pressures varying by up to 16 mb and maximum winds by 15 m s−1. The Burk–Thompson and bulk aerodynamic boundary layer schemes produced the strongest storms while the MRF scheme produced the weakest storm. Simulated horizontal precipitation structures varied substantially between the different PBL schemes, suggesting that accurate forecasts of precipitation in hurricanes can be just as sensitive to the formulation of the PBL as they are to the cloud microphysical parameterizations. Each PBL scheme is different in its formulation of the vertical mixing within the PBL and the surface fluxes, with the exception of the MRF and Blackadar schemes, which share essentially the same surface flux parameterization. Detailed analyses of the PBL schemes describe the key differences in the surface fluxes and how they impact storm intensity. In order to isolate the effects of vertical mixing and surfaces fluxes, simulations were conducted in which each of the surface flux schemes was used in conjunction with the same vertical mixing scheme, and vice versa. These experiments indicate that simulated intensity is largely determined by the surface fluxes rather than by the vertical mixing, with the exception of the MRF PBL case, in which excessively deep vertical mixing acts to dry the lower PBL and reduce hurricane intensity. Simulations that vary only the surface fluxes suggest that the intensity of the simulated hurricane increases with increasing values of the ratio of the exchange coefficients for enthalpy and momentum, Ck/CD. However, even for identical values of Ck/CD, the simulated intensity varies depending on the wind speed dependence of the surface roughness parameter z0.
Keywords
Affiliated Institutions
Related Publications
The Sensitivity of the Numerical Simulation of the Southwest Monsoon Boundary Layer to the Choice of PBL Turbulence Parameterization in MM5
Summertime convection over Arizona typically begins in the early afternoon and continues into the night. This suggests that the evolution of the daytime planetary boundary layer...
A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes
Abstract This paper proposes a revised vertical diffusion package with a nonlocal turbulent mixing coefficient in the planetary boundary layer (PBL). Based on the study of Noh e...
Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization
If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to...
Comparison of NCEP-NCAR Reanalysis with 1987 FIFE Data
Data from the FIFE experiment of the summer of 1987 are used to assess the diurnal and seasonal cycles of the surface energy budget and boundary layer in the NCEP-NCAR reanalysi...
Development and Testing of a Surface Flux and Planetary Boundary Layer Model for Application in Mesoscale Models
Abstract Although the development of soil, vegetation, and atmosphere interaction models has been driven primarily by the need for accurate simulations of long-term energy and m...
Publication Info
- Year
- 2000
- Type
- article
- Volume
- 128
- Issue
- 12
- Pages
- 3941-3961
- Citations
- 411
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1175/1520-0493(2000)129<3941:sohrso>2.0.co;2