Abstract
We present a detailed analytical study of ultra-relativistic neutrinos in cosmological perturbation theory and of the observable signatures of inhomogeneities in the cosmic neutrino background. We note that a modification of perturbation variables that removes all the time derivatives of scalar gravitational potentials from the dynamical equations simplifies their solution notably. The used perturbations of particle number per coordinate, not proper, volume are generally constant on superhorizon scales. In real space an analytical analysis can be extended beyond fluids to neutrinos. The faster cosmological expansion due to the neutrino background changes the acoustic and damping angular scales of the cosmic microwave background (CMB). But we find that equivalent changes can be produced by varying other standard parameters, including the primordial helium abundance. The low-l integrated Sachs-Wolfe effect is also not sensitive to neutrinos. However, the gravity of neutrino perturbations suppresses the CMB acoustic peaks for the multipoles with l>~200 while it enhances the amplitude of matter fluctuations on these scales. In addition, the perturbations of relativistic neutrinos generate a *unique phase shift* of the CMB acoustic oscillations that for adiabatic initial conditions cannot be caused by any other standard physics. The origin of the shift is traced to neutrino free-streaming velocity exceeding the sound speed of the photon-baryon plasma. We find that from a high resolution, low noise instrument such as CMBPOL the effective number of light neutrino species can be determined with an accuracy of sigma(N_nu) = 0.05 to 0.09, depending on the constraints on the helium abundance.
Keywords
Affiliated Institutions
Related Publications
Neutrino and dark radiation properties in light of recent CMB observations
Recent cosmic microwave background measurements at high multipoles from the South Pole Telescope and from the Atacama Cosmology Telescope seem to disagree in their conclusions f...
Robustness of cosmic neutrino background detection in the cosmic microwave background
The existence of a cosmic neutrino background can be probed indirectly by CMB experiments, not only by measuring the background density of radiation in the universe, but also by...
Evidence for Massive Neutrinos from Cosmic Microwave Background and Lensing Observations
We discuss whether massive neutrinos (either active or sterile) can reconcile some of the tensions within cosmological data that have been brought into focus by the recently rel...
First‐Year <i>Wilkinson Microwave Anisotropy Probe</i> ( <i>WMAP</i> ) Observations: Preliminary Maps and Basic Results
We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error...
<i>Planck</i> 2018 results
We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the t...
Publication Info
- Year
- 2004
- Type
- article
- Volume
- 69
- Issue
- 8
- Citations
- 352
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1103/physrevd.69.083002