Abstract
Observations show that global average tropospheric temperatures have been rising during the past century, with the most recent portion of record showing a sharp rise since the mid-1970s. This study shows that the most recent portion of the global temperature record (1970 to 1992) can be closely reproduced by atmospheric models forced only with observed ocean surface temperatures. In agreement with a diverse suite of controversial observational evidence from the past 40 years, the upward trend in simulated tropospheric temperatures is caused by an enhancement of the tropical hydrologic cycle driven by increasing tropical ocean temperatures. Although it is possible that the observed behavior is due to natural climate variability, there is disquieting similarity between these model results, observed climate trends in recent decades, and the early expressions of the climatic response to increased atmospheric carbon dioxide in numerical simulations.
Keywords
Affiliated Institutions
Related Publications
The ERA5 global reanalysis
Abstract Within the Copernicus Climate Change Service (C3S), ECMWF is producing the ERA5 reanalysis which, once completed, will embody a detailed record of the global atmosphere...
A box diffusion model to study the carbon dioxide exchange in nature
Phenomena related to the natural carbon cycle as the 14C distribution between atmosphere and ocean and the atmospheric response to the input of fossil fuel CO<sub>2</sub> and of...
Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot
An expanded and largely complete upper Paleocene to upper Eocene section was recovered from the pelagic cap overlying Allison Guyot, Mid‐Pacific Mountains at Ocean Drilling Prog...
Biological and Physical Signs of Climate Change: Focus on Mosquito-borne Diseases
The Intergovernmental Panel on Climate Change concluded that there is "discernible evidence" that humans - through accelerating changes in multiple forcing factors - have begun ...
Low-temperature Rosseland opacities
view Abstract Citations (1130) References (75) Co-Reads Similar Papers Volume Content Graphics Metrics Export Citation NASA/ADS Low-Temperature Rosseland Opacities Alexander, D....
Publication Info
- Year
- 1995
- Type
- article
- Volume
- 267
- Issue
- 5198
- Pages
- 666-671
- Citations
- 158
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1126/science.267.5198.666