Abstract
The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.
Keywords
Affiliated Institutions
Related Publications
Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface
A new technique is described for the numerical investigation of the time-dependent flow of an incompressible fluid, the boundary of which is partially confined and partially fre...
Cellular convection with finite amplitude in a rotating fluid
When a rotating layer of fluid is heated uniformly from below and cooled from above, the onset of instability is inhibited by the rotation. The first part of this paper treats t...
Turbulence Approximation for Inhomogeneous Flows: Part I. The Clipping Approximation
A modification of the quasi-normal theory is proposed for the study of inhomogeneous turbulent flows. In this approximation realizability conditions for third-order correlations...
Prandtl number of lattice Bhatnagar–Gross–Krook fluid
The lattice Bhatnagar–Gross–Krook modeled fluid has an unchangeable unit Prandtl number. A simple method is introduced in this report to formulate a flexible Prandtl number for ...
Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
Machine-learning fluid flow Quantifying fluid flow is relevant to disciplines ranging from geophysics to medicine. Flow can be experimentally visualized using, for example, smok...
Publication Info
- Year
- 1986
- Type
- book-chapter
- Pages
- 188-209
- Citations
- 7
- Access
- Closed
External Links
Social Impact
Social media, news, blog, policy document mentions
Citation Metrics
Cite This
Identifiers
- DOI
- 10.1007/978-3-663-00197-3_13